The response of the equatorial tropospheric ozone to the Madden–Julian Oscillation in TES satellite observations and CAM-chem model simulation
نویسندگان
چکیده
The Madden–Julian Oscillation (MJO) is the dominant form of the atmospheric intra-seasonal oscillation, manifested by slow eastward movement (about 5 m s−1) of tropical deep convection. This study investigates the MJO’s impact on equatorial tropospheric ozone (10 N–10 S) in satellite observations and chemical transport model (CTM) simulations. For the satellite observations, we analyze the Tropospheric Emission Spectrometer (TES) level-2 ozone profile data for the period of January 2004 to June 2009. For the CTM simulations, we run the Community Atmosphere Model with chemistry (CAM-chem) driven by the Goddard Earth Observing System Model, Version 5 (GEOS5)-analyzed meteorological fields for the same data period as the TES measurements. Our analysis indicates that the behavior of the total tropospheric column (TTC) ozone at the intra-seasonal timescale is different from that of the total column ozone, with the signal in the equatorial region comparable with that in the subtropics. The model-simulated and satellite-measured ozone anomalies agree in their general pattern and amplitude when examined in the vertical cross section (the average spatial correlation coefficient among the eight phases is 0.63), with an eastward propagation signature at a similar phase speed as the convective anomalies (5 m s−1). The model ozone anomalies on the intra-seasonal timescale are about 5 times larger when lightning emissions of NOx are included in the simulation than when they are not. Nevertheless, large-scale advection is the primary driving force for the ozone anomalies associated with the MJO. The variability related to the MJO for ozone reaches up to 47 % of the total variability (ranging from daily to interannual), indicating that the MJO should be accounted for in simulating ozone perturbations in the tropics.
منابع مشابه
The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors
The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Souther...
متن کاملImpact of surface emissions to the zonal variability of tropical tropospheric ozone and carbon monoxide for November 2004
The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde meas...
متن کاملSimulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): chemistry evaluation and initial results
This study presents annual simulations of tropospheric ozone and related species made for the first time using the WRF-Chem model over South Asia for the year 2008. The model-simulated ozone, CO, and NOx are evaluated against ground-based, balloon-borne and satellite-borne (TES, OMI and MOPITT) observations. The comparison of model results with surface ozone observations from seven sites and CO...
متن کاملOzone-CO correlations determined by the TES satellite instrument in continental outflow regions
[1] Collocated measurements of tropospheric ozone (O3) and carbon monoxide (CO) from the Tropospheric Emission Spectrometer (TES) aboard the EOS Aura satellite provide information on O3-CO correlations to test our understanding of global anthropogenic influence on O3. We examine the global distribution of TES O3-CO correlations in the middle troposphere (618 hPa) for July 2005 and compare to co...
متن کاملAnalysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument
[1] We use the GEOS-Chem chemical transport model to interpret observations of tropospheric ozone from the Tropospheric Emission Spectrometer (TES) satellite instrument in summer 2005. Observations from TES reveal elevated ozone in the middle troposphere (500–400 hPa) across North Africa and the Middle East. Observed ozone abundances in the middle troposphere are at a maximum in summer and a mi...
متن کامل